Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 110(11): 1738-1748, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36082974

RESUMEN

Neuroma formation following limb amputation is a prevalent and debilitating condition that can deeply affect quality of life and productivity. Several approaches exist to prevent or treat neuromas; however, no approach is either consistently reliable or surgically facile, with high rates of neuroma occurrence and/or recurrence. The present study describes the development and testing of a xenogeneic nerve cap graft made from decellularized porcine nerve. The grafts were tested in vitro for cellular removal, cytotoxicity, mechanical properties, and morphological characteristics. The grafts were then tested in rat sciatic nerve gap reconstruction and nerve amputation models for 8 weeks. Gross morphology, electrophysiology, and histopathology assessments were performed to determine the ability of the grafts to limit pathologic nerve regrowth. In vitro testing showed well decellularized and demyelinated nerve cap graft structures without any cytotoxicity from residual reagents. The grafts had a proximal socket for the proximal nerve stump and longitudinally oriented internal pores. Mechanical and surgical handling properties suggested suitability for implantation as a nerve graft. Following 8 weeks in vivo, the grafts were well integrated with the proximal and distal nerve segments without evidence of fibrotic adhesions to the surrounding tissues or bulbous outgrowth of the nerve. Electrophysiology revealed absence of nerve conduction within the remodeled nerve cap grafts and significant downstream muscle atrophy. Histologic evaluation showed well organized but limited axonal regrowth within the grafts without fibrous overgrowth or neuromatous hypercellularity. These results provide proof of concept for a novel xenograft-based approach to neuroma prevention.


Asunto(s)
Neuroma , Calidad de Vida , Animales , Axones , Xenoinjertos , Humanos , Regeneración Nerviosa , Neuroma/patología , Neuroma/prevención & control , Ratas , Nervio Ciático/cirugía , Porcinos
3.
Sci Rep ; 9(1): 3482, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837658

RESUMEN

Injury to retinal ganglion cells (RGC), central nervous system neurons that relay visual information to the brain, often leads to RGC axon degeneration and permanently lost visual function. Herein this study shows matrix-bound nanovesicles (MBV), a distinct class of extracellular nanovesicle localized specifically to the extracellular matrix (ECM) of healthy tissues, can neuroprotect RGCs and preserve visual function after severe, intraocular pressure (IOP) induced ischemia in rat. Intravitreal MBV injections attenuated IOP-induced RGC axon degeneration and death, protected RGC axon connectivity to visual nuclei in the brain, and prevented loss in retinal function as shown by histology, anterograde axon tracing, manganese-enhanced magnetic resonance imaging, and electroretinography. In the optic nerve, MBV also prevented IOP-induced decreases in growth associated protein-43 and IOP-induced increases in glial fibrillary acidic protein. In vitro studies showed MBV suppressed pro-inflammatory signaling by activated microglia and astrocytes, stimulated RGC neurite growth, and neuroprotected RGCs from neurotoxic media conditioned by pro-inflammatory astrocytes. Thus, MBV can positively modulate distinct signaling pathways (e.g., inflammation, cell death, and axon growth) in diverse cell types. Since MBV are naturally derived, bioactive factors present in numerous FDA approved devices, MBV may be readily useful, not only experimentally, but also clinically as immunomodulatory, neuroprotective factors for treating trauma or disease in the retina as well as other CNS tissues.


Asunto(s)
Apoptosis , Axones/metabolismo , Vesículas Extracelulares/química , Fármacos Neuroprotectores/química , Células Ganglionares de la Retina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Vesículas Extracelulares/trasplante , Proteína GAP-43/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Interleucina-1beta/metabolismo , Presión Intraocular/efectos de los fármacos , Isquemia/metabolismo , Isquemia/patología , Lipopolisacáridos/farmacología , Manganeso/química , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Proyección Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Retina/patología , Porcinos
4.
EBioMedicine ; 26: 47-59, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29208469

RESUMEN

Central nervous system (CNS) neurons fail to regrow injured axons, often resulting in permanently lost neurologic function. Tacrolimus is an FDA-approved immunosuppressive drug with known neuroprotective and neuroregenerative properties in the CNS. However, tacrolimus is typically administered systemically and blood levels required to effectively treat CNS injuries can lead to lethal, off-target organ toxicity. Thus, delivering tacrolimus locally to CNS tissues may provide therapeutic control over tacrolimus levels in CNS tissues while minimizing off-target toxicity. Herein we show an electrospun poly(ester urethane) urea and tacrolimus elastomeric matrix (PEUU-Tac) can deliver tacrolimus trans-durally to CNS tissues. In an acute CNS ischemia model in rat, the optic nerve (ON) was clamped for 10s and then PEUU-Tac was used as an ON wrap and sutured around the injury site. Tacrolimus was detected in PEUU-Tac wrapped ONs at 24h and 14days, without significant increases in tacrolimus blood levels. Similar to systemically administered tacrolimus, PEUU-Tac locally decreased glial fibrillary acidic protein (GFAP) at the injury site and increased growth associated protein-43 (GAP-43) expression in ischemic ONs from the globe to the chiasm, consistent with decreased astrogliosis and increased retinal ganglion cell (RGC) axon growth signaling pathways. These initial results suggest PEUU-Tac is a biocompatible elastic matrix that delivers bioactive tacrolimus trans-durally to CNS tissues without significantly increasing tacrolimus blood levels and off-target toxicity.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Traumatismos del Nervio Óptico/tratamiento farmacológico , Células Ganglionares de la Retina/efectos de los fármacos , Tacrolimus/administración & dosificación , Animales , Sistema Nervioso Central/fisiopatología , Sistemas de Liberación de Medicamentos , Elastómeros/administración & dosificación , Elastómeros/química , Humanos , Traumatismos del Nervio Óptico/patología , Poliésteres/administración & dosificación , Poliésteres/química , Ratas , Células Ganglionares de la Retina/patología , Tacrolimus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...